Airborne virus capture and inactivation by an electrostatic particle collector.

نویسندگان

  • Eric M Kettleson
  • Bala Ramaswami
  • Christopher J Hogan
  • Myong-Hwa Lee
  • Gennadiy A Statyukha
  • Pratim Biswas
  • Largus T Angenent
چکیده

Airborne virus capture and inactivation were studied in an electrostatic precipitator (ESP) at applied voltages from -10 to +10 kV using aerosolized bacteriophages T3 and MS2. For each charging scenario, samples were collected from the effluent air stream and assayed for viable phages using plaque assays and for nucleic acids using quantitative polymerase chain reaction (qPCR) assays. At higher applied voltages, more virus particles were captured from air with maximum log reductions of 6.8 and 6.3 for the plaque assay and 4.2 and 3.5 for the qPCR assay at -10 kV for T3 and MS2, respectively. Beyond corona inception (i.e., at applied voltages of -10, -8, +8, and +10 kV), log reduction values obtained with the plaque assay were much higher compared to those of the qPCR assay because nonviable particles, while present in the effluent were unaccounted for in the plaque assay. Comparisons of these assays showed that in-flight inactivation (i.e., inactivation without capture) was greater for the highest applied voltages with a log inactivation of 2.6 for both phages at -10 kV. We have demonstrated great potential for virus capture and inactivation via continual ion and reactive species bombardment when conditions in the ESP are enforced to generate a corona discharge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of inlet/outlet configurations on the electrostatic capture of airborne nanoparticles and viruses

Motivated by capture and detection of airborne biological agents in real time with a cantilever biosensor without introducing the agents into liquids, we present the effects of inlet/outlet configurations of a homemade particle collector on the electrostatic capture of airborne 100 nm diameter nanoparticles under swirling gas flows. This particle collector has three different inlet/outlet confi...

متن کامل

Capture of airborne nanoparticles in swirling flows using non-uniform electrostatic fields for bio-sensor applications

Collection of biological particles is the first and critical step for any biological agent detection system. Towards our goal of capturing and detecting airborne biological entities in real time, here we investigate on the design of an electrostatic particle capture system. We report on the capture of airborne 100 nm diameter polystyrene nanoparticles as a model system, in swirling flows under ...

متن کامل

Effect of ozone on the inactivation of indoor airborne viruses with the COVID-19 virus approach: a systematic review

Background: Nowadays, the COVID-19 pandemic has become a global problem that new methods must be used to prevent it. The virus is highly contagious and is mainly transmitted through the air. Ozone is a powerful oxidant that can be used to inactivate a wide range of viruses that may be resistant to other disinfectants. The purpose of this study was to review the use and effect of ozone in inacti...

متن کامل

Ionizing air affects influenza virus infectivity and prevents airborne-transmission

By the use of a modified ionizer device we describe effective prevention of airborne transmitted influenza A (strain Panama 99) virus infection between animals and inactivation of virus (>97%). Active ionizer prevented 100% (4/4) of guinea pigs from infection. Moreover, the device effectively captured airborne transmitted calicivirus, rotavirus and influenza virus, with recovery rates up to 21%...

متن کامل

Soft-X-ray-enhanced electrostatic precipitation for protection against inhalable allergens, ultrafine particles, and microbial infections.

Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 43 15  شماره 

صفحات  -

تاریخ انتشار 2009